Matrix Factorization For k-Means

Data Skeptic - A podcast by Kyle Polich

Categories:

Many people know K-means clustering as a powerful clustering technique but not all listeners will be as familiar with spectral clustering. In today’s episode, Sibylle Hess from the Data Mining group at TU Eindhoven joins us to discuss her work around spectral clustering and how its result could potentially cause a massive shift from the conventional neural networks. Listen to learn about her findings. Visit our website for additional show notes Thanks to our sponsor, Weights & Biases

Visit the podcast's native language site