The Bittensor Bull Thesis with James Ross and Mog
The Rollup - A podcast by The Rollup Co

Categories:
For today's episode, we dive deep into the the intersection of AI and crypto, and discuss how this sector has produced more hype than results (so far).While both fields promise decentralization, combining them effectively has proven challenging. Most projects either centralize AI decision-making or create token systems without clear utility.Bittensor is taking a different approach to this problem by creating a network where AI models compete for rewards through market incentives. This system lets token holders decide which models receive rewards based on measurable performance, rather than promises or marketing.Their recent update shifted voting power from validators to token holders, aiming to align incentives more directly with utility. One project testing this approach is Mode, with their new subnet Synth, an AI model competing to predict market volatility.The Synth subnet is live, with data scientists building rival prediction models. Models face off in open competition with market-driven feedback, creating natural selectionâstrong performers earn more rewards, while weaker ones get filtered out.Letâs dive into what this means, how Synth is applying it, and whatâs next for onchain AI.Join The Rollup Edge: https://members.therollup.coWebsite: https://therollup.co/Spotify: https://open.spotify.com/show/1P6ZeYd..Podcast: https://therollup.co/category/podcastFollow us on X: https://www.x.com/therollupcoFollow Rob on X: https://www.x.com/robbie_rollupFollow Andy on X: https://www.x.com/ayyyeandyJoin our TG group: https://t.me/+8ARkR_YZixE5YjBhThe Rollup Disclosures: https://therollup.co/the-rollup-disclðððŠððððð ðð¥: ðð¯ð·ðŠðŽðµðªð¯ðš ðªð¯ ð€ð³ðºð±ðµð°ð€ð¶ð³ð³ðŠð¯ð€ðº ð¢ð¯ð¥ ððŠððª ð±ðð¢ðµð§ð°ð³ð®ðŽ ð€ð°ð®ðŠðŽ ðžðªðµð© ðªð¯ð©ðŠð³ðŠð¯ðµ ð³ðªðŽð¬ðŽ ðªð¯ð€ðð¶ð¥ðªð¯ðš ðµðŠð€ð©ð¯ðªð€ð¢ð ð³ðªðŽð¬, ð©ð¶ð®ð¢ð¯ ðŠð³ð³ð°ð³, ð±ðð¢ðµð§ð°ð³ð® ð§ð¢ðªðð¶ð³ðŠ ð¢ð¯ð¥ ð®ð°ð³ðŠ. ððµ ð€ðŠð³ðµð¢ðªð¯ ð±ð°ðªð¯ðµðŽ ðµð©ð³ð°ð¶ðšð©ð°ð¶ðµ ðµð©ðªðŽ ð€ð©ð¢ð¯ð¯ðŠð, ðžðŠ ð®ð¢ðº ðŠð¢ð³ð¯ ð¢ ð€ð°ð®ð®ðªðŽðŽðªð°ð¯ ð°ð³ ð§ðŠðŠ ð¢ðŽ ð¢ ðŽð±ð°ð¯ðŽð°ð³ðŽð©ðªð±, ðªð§ ðµð©ðªðŽ ðªðŽ ðµð©ðŠ ð€ð¢ðŽðŠ ðžðŠ ðžðªðð ð¢ððžð¢ðºðŽ ð®ð¢ð¬ðŠ ðŽð¶ð³ðŠ ðªðµ ðªðŽ ð€ððŠð¢ð³. ððŠ ð¢ð³ðŠ ðŽðµð³ðªð€ðµððº ð¢ð¯ ðŠð¥ð¶ð€ð¢ðµðªð°ð¯ð¢ð ð€ð°ð¯ðµðŠð¯ðµ ð±ðð¢ðµð§ð°ð³ð®, ð¯ð°ðµð©ðªð¯ðš ðžðŠ ð°ð§ð§ðŠð³ ðªðŽ ð§ðªð¯ð¢ð¯ð€ðªð¢ð ð¢ð¥ð·ðªð€ðŠ. ððŠ ð¢ð³ðŠ ð¯ð°ðµ ð±ð³ð°ð§ðŠðŽðŽðªð°ð¯ð¢ððŽ ð°ð³ ððªð€ðŠð¯ðŽðŠð¥ ð¢ð¥ð·ðªðŽð°ð³ðŽ.