Explainable AI for Biology and Medicine with Su-In Lee - #642
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) - A podcast by Sam Charrington - Luni
Categories:
Today we’re joined by Su-In Lee, a professor at the Paul G. Allen School of Computer Science And Engineering at the University Of Washington. In our conversation, Su-In details her talk from the ICML 2023 Workshop on Computational Biology which focuses on developing explainable AI techniques for the computational biology and clinical medicine fields. Su-In discussed the importance of explainable AI contributing to feature collaboration, the robustness of different explainability approaches, and the need for interdisciplinary collaboration between the computer science, biology, and medical fields. We also explore her recent paper on the use of drug combination therapy, challenges with handling biomedical data, and how they aim to make meaningful contributions to the healthcare industry by aiding in cause identification and treatments for Cancer and Alzheimer's diseases. The complete show notes for this episode can be found at twimlai.com/go/642.