Best AI papers explained
A podcast by Enoch H. Kang
512 Episoade
-
Self-improving LLM agents at Test-Time
Publicat: 27.10.2025 -
KL-Regularized Reinforcement Learning is designed to Mode Collapse
Publicat: 27.10.2025 -
How do LLMs use their depth?
Publicat: 27.10.2025 -
Thought Communication in Multiagent Collaboration
Publicat: 27.10.2025 -
Reasoning with Sampling: Base Models Outperform RL
Publicat: 26.10.2025 -
Continual Learning via Sparse Memory Finetuning
Publicat: 26.10.2025 -
Direct Preference Optimization with Unobserved Preference Heterogeneity: The Necessity of Ternary Preferences
Publicat: 24.10.2025 -
The Coverage Principle: How Pre-Training Enables Post-Training
Publicat: 24.10.2025 -
The Era of Real-World Human Interaction: RL from User Conversations
Publicat: 24.10.2025 -
Agent Learning via Early Experience
Publicat: 24.10.2025 -
Demystifying the Mechanisms Behind Emergent Exploration in Goal-conditioned RL
Publicat: 22.10.2025 -
Rewriting History: A Recipe for Interventional Analyses to Study Data Effects on Model Behavior
Publicat: 22.10.2025 -
A Definition of AGI
Publicat: 22.10.2025 -
Provably Learning from Language Feedback
Publicat: 21.10.2025 -
In-Context Learning for Pure Exploration
Publicat: 21.10.2025 -
On the Role of Preference Variance in Preference Optimization
Publicat: 20.10.2025 -
Training LLM Agents to Empower Humans
Publicat: 20.10.2025 -
Richard Sutton Declares LLMs a Dead End
Publicat: 20.10.2025 -
Demystifying Reinforcement Learning in Agentic Reasoning
Publicat: 19.10.2025 -
Emergent coordination in multi-agent language models
Publicat: 19.10.2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
