527 Episoade

  1. Predictability Shapes Adaptation: An Evolutionary Perspective on Modes of Learning in Transformers

    Publicat: 20.05.2025
  2. Efficient Exploration for LLMs

    Publicat: 19.05.2025
  3. Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation

    Publicat: 18.05.2025
  4. Bayesian Concept Bottlenecks with LLM Priors

    Publicat: 17.05.2025
  5. Transformers for In-Context Reinforcement Learning

    Publicat: 17.05.2025
  6. Evaluating Large Language Models Across the Lifecycle

    Publicat: 17.05.2025
  7. Active Ranking from Human Feedback with DopeWolfe

    Publicat: 16.05.2025
  8. Optimal Designs for Preference Elicitation

    Publicat: 16.05.2025
  9. Dual Active Learning for Reinforcement Learning from Human Feedback

    Publicat: 16.05.2025
  10. Active Learning for Direct Preference Optimization

    Publicat: 16.05.2025
  11. Active Preference Optimization for RLHF

    Publicat: 16.05.2025
  12. Test-Time Alignment of Diffusion Models without reward over-optimization

    Publicat: 16.05.2025
  13. Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback

    Publicat: 16.05.2025
  14. GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time Alignment

    Publicat: 16.05.2025
  15. Advantage-Weighted Regression: Simple and Scalable Off-Policy RL

    Publicat: 16.05.2025
  16. Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective

    Publicat: 16.05.2025
  17. Transformers can be used for in-context linear regression in the presence of endogeneity

    Publicat: 15.05.2025
  18. Bayesian Concept Bottlenecks with LLM Priors

    Publicat: 15.05.2025
  19. In-Context Parametric Inference: Point or Distribution Estimators?

    Publicat: 15.05.2025
  20. Enough Coin Flips Can Make LLMs Act Bayesian

    Publicat: 15.05.2025

17 / 27

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site