Best AI papers explained
A podcast by Enoch H. Kang
527 Episoade
-
Predictability Shapes Adaptation: An Evolutionary Perspective on Modes of Learning in Transformers
Publicat: 20.05.2025 -
Efficient Exploration for LLMs
Publicat: 19.05.2025 -
Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation
Publicat: 18.05.2025 -
Bayesian Concept Bottlenecks with LLM Priors
Publicat: 17.05.2025 -
Transformers for In-Context Reinforcement Learning
Publicat: 17.05.2025 -
Evaluating Large Language Models Across the Lifecycle
Publicat: 17.05.2025 -
Active Ranking from Human Feedback with DopeWolfe
Publicat: 16.05.2025 -
Optimal Designs for Preference Elicitation
Publicat: 16.05.2025 -
Dual Active Learning for Reinforcement Learning from Human Feedback
Publicat: 16.05.2025 -
Active Learning for Direct Preference Optimization
Publicat: 16.05.2025 -
Active Preference Optimization for RLHF
Publicat: 16.05.2025 -
Test-Time Alignment of Diffusion Models without reward over-optimization
Publicat: 16.05.2025 -
Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
Publicat: 16.05.2025 -
GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-time Alignment
Publicat: 16.05.2025 -
Advantage-Weighted Regression: Simple and Scalable Off-Policy RL
Publicat: 16.05.2025 -
Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective
Publicat: 16.05.2025 -
Transformers can be used for in-context linear regression in the presence of endogeneity
Publicat: 15.05.2025 -
Bayesian Concept Bottlenecks with LLM Priors
Publicat: 15.05.2025 -
In-Context Parametric Inference: Point or Distribution Estimators?
Publicat: 15.05.2025 -
Enough Coin Flips Can Make LLMs Act Bayesian
Publicat: 15.05.2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
