Best AI papers explained
A podcast by Enoch H. Kang
522 Episoade
-  
Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond
Publicat: 03.07.2025 -  
Learning to Explore: An In-Context Learning Approach for Pure Exploration
Publicat: 03.07.2025 -  
Human-AI Matching: The Limits of Algorithmic Search
Publicat: 25.06.2025 -  
Uncertainty Quantification Needs Reassessment for Large-language Model Agents
Publicat: 25.06.2025 -  
Bayesian Meta-Reasoning for Robust LLM Generalization
Publicat: 25.06.2025 -  
General Intelligence Requires Reward-based Pretraining
Publicat: 25.06.2025 -  
Deep Learning is Not So Mysterious or Different
Publicat: 25.06.2025 -  
AI Agents Need Authenticated Delegation
Publicat: 25.06.2025 -  
Probabilistic Modelling is Sufficient for Causal Inference
Publicat: 25.06.2025 -  
Not All Explanations for Deep Learning Phenomena Are Equally Valuable
Publicat: 25.06.2025 -  
e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs
Publicat: 17.06.2025 -  
Extrapolation by Association: Length Generalization Transfer in Transformers
Publicat: 17.06.2025 -  
Uncovering Causal Hierarchies in Language Model Capabilities
Publicat: 17.06.2025 -  
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers
Publicat: 17.06.2025 -  
Improving Treatment Effect Estimation with LLM-Based Data Augmentation
Publicat: 17.06.2025 -  
LLM Numerical Prediction Without Auto-Regression
Publicat: 17.06.2025 -  
Self-Adapting Language Models
Publicat: 17.06.2025 -  
Why in-context learning models are good few-shot learners?
Publicat: 17.06.2025 -  
Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina∗
Publicat: 14.06.2025 -  
The Logic of Machines: The AI Reasoning Debate
Publicat: 12.06.2025 
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
