Data Skeptic

A podcast by Kyle Polich

Categories:

554 Episoade

  1. Understanding Neural Networks

    Publicat: 08.05.2020
  2. Self-Explaining AI

    Publicat: 02.05.2020
  3. Plastic Bag Bans

    Publicat: 24.04.2020
  4. Self Driving Cars and Pedestrians

    Publicat: 18.04.2020
  5. Computer Vision is Not Perfect

    Publicat: 10.04.2020
  6. Uncertainty Representations

    Publicat: 04.04.2020
  7. AlphaGo, COVID-19 Contact Tracing and New Data Set

    Publicat: 28.03.2020
  8. Visualizing Uncertainty

    Publicat: 20.03.2020
  9. Interpretability Tooling

    Publicat: 13.03.2020
  10. Shapley Values

    Publicat: 06.03.2020
  11. Anchors as Explanations

    Publicat: 28.02.2020
  12. Mathematical Models of Ecological Systems

    Publicat: 22.02.2020
  13. Adversarial Explanations

    Publicat: 14.02.2020
  14. ObjectNet

    Publicat: 07.02.2020
  15. Visualization and Interpretability

    Publicat: 31.01.2020
  16. Interpretable One Shot Learning

    Publicat: 26.01.2020
  17. Fooling Computer Vision

    Publicat: 22.01.2020
  18. Algorithmic Fairness

    Publicat: 14.01.2020
  19. Interpretability

    Publicat: 07.01.2020
  20. NLP in 2019

    Publicat: 31.12.2019

13 / 28

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

Visit the podcast's native language site