History of Philosophy Without Any Gaps
A podcast by Peter Adamson - Duminică
478 Episoade
-
HoP 117 - Born Again - Latin Platonism
Publicat: 24.02.2013 -
HoP 116 - Charles Brittain on Augustine's On the Trinity
Publicat: 17.02.2013 -
HoP 115 - Me, Myself and I - Augustine on Mind and Memory
Publicat: 09.02.2013 -
HoP 114 - Sarah Byers on Augustine's Ethics
Publicat: 03.02.2013 -
HoP 113 - Heaven and Earth - Augustine’s City of God
Publicat: 27.01.2013 -
HoP 112 - Help Wanted - Augustine on Freedom
Publicat: 20.01.2013 -
HoP 111 - Papa Don't Teach - Augustine on Language
Publicat: 13.01.2013 -
HoP 110 - Life and Time - Augustine's Confessions
Publicat: 06.01.2013 -
HoP 109 - Spreading the Word - the Latin Church Fathers
Publicat: 30.12.2012 -
HoP 108 - George Boys-Stones on the Greek Church Fathers
Publicat: 23.12.2012 -
HoP 107 - Practice Makes Perfect - Christian Asceticism
Publicat: 16.12.2012 -
HoP 106 - Double or Nothing - Maximus the Confessor
Publicat: 09.12.2012 -
HoP 105 - Naming the Nameless - the Pseudo-Dionysius
Publicat: 02.12.2012 -
HoP 104 - Let's Talk Turkey - the Cappadocians
Publicat: 25.11.2012 -
HoP 103 - Fall and Rise - Origen
Publicat: 17.11.2012 -
HoP 102 - Please Accept Our Apologies - the Greek Church Fathers
Publicat: 11.11.2012 -
HoP 101 - Father Figures - Introduction to Ancient Christian Philosophy
Publicat: 04.11.2012 -
HoP 100 - Michael Trapp and Caroline Humfress on Ancient Culture and Philosophy
Publicat: 28.10.2012 -
HoP 099 - Richard Sorabji on the Commentators
Publicat: 21.10.2012 -
HoP 098 - For a Limited Time Only - John Philoponus
Publicat: 14.10.2012
Peter Adamson, Professor of Philosophy at the LMU in Munich and at King’s College London, takes listeners through the history of philosophy, ”without any gaps.” The series looks at the ideas, lives and historical context of the major philosophers as well as the lesser-known figures of the tradition. www.historyofphilosophy.net. NOTE: iTunes shows only the most recent 300 episodes; subscribe on iTunes or go to a different platform for the whole series.