History of Philosophy Without Any Gaps
A podcast by Peter Adamson - Duminică
Categories:
466 Episoade
-
HoP 380 - Take Your Choice - Erasmus vs Luther on Free Will
Publicat: 26.09.2021 -
HoP 379 - Lyndal Roper on Luther
Publicat: 12.09.2021 -
HoP 378 - Faith, No More - Martin Luther
Publicat: 01.08.2021 -
HoP 377 - One Way or Another - Northern Scholasticism
Publicat: 18.07.2021 -
HoP 376 - Books That Last Forever - Erasmus
Publicat: 04.07.2021 -
HoP 375 - Paul Richard Blum on Nicholas of Cusa
Publicat: 20.06.2021 -
HoP 374 - Opposites Attract - Nicholas of Cusa
Publicat: 06.06.2021 -
HoP 373 - Lords of Language - Northern Humanism
Publicat: 23.05.2021 -
HoP 372 - Strong, Silent Type - the Printing Press
Publicat: 09.05.2021 -
HoP 371 - European Disunion - Introduction to the Reformation
Publicat: 25.04.2021 -
HoP 370 - Ingrid Rowland on Rome in the Renaissance
Publicat: 11.04.2021 -
HoP 369 - The Harder They Fall - Galileo and the Renaissance
Publicat: 28.03.2021 -
HoP 368 - Boundless Enthusiasm - Giordano Bruno
Publicat: 14.03.2021 -
HoP 367 - Brian Copenhaver on Renaissance Magic
Publicat: 28.02.2021 -
HoP 366 - The Men Who Saw Tomorrow - Renaissance Magic and Astrology
Publicat: 14.02.2021 -
HoP 365 - Spirits in the Material World - Telesio and Campanella on Nature
Publicat: 31.01.2021 -
HoP 364 - Guido Giglioni on Renaissance Medicine
Publicat: 17.01.2021 -
HoP 363 - Man of Discoveries - Girolamo Cardano
Publicat: 03.01.2021 -
HoP 362 - Just What the Doctor Ordered - Renaissance Medicine
Publicat: 20.12.2020 -
HoP 361 - The Measure of All Things - Renaissance Mathematics and Art
Publicat: 06.12.2020
Peter Adamson, Professor of Philosophy at the LMU in Munich and at King’s College London, takes listeners through the history of philosophy, ”without any gaps.” The series looks at the ideas, lives and historical context of the major philosophers as well as the lesser-known figures of the tradition. www.historyofphilosophy.net. NOTE: iTunes shows only the most recent 300 episodes; subscribe on iTunes or go to a different platform for the whole series.