83 Episoade

  1. Code generation

    Publicat: 04.06.2021
  2. Why is autograd so complicated

    Publicat: 03.06.2021
  3. __torch_function__

    Publicat: 02.06.2021
  4. TensorIterator

    Publicat: 01.06.2021
  5. native_functions.yaml

    Publicat: 28.05.2021
  6. Serialization

    Publicat: 27.05.2021
  7. Continuous integration

    Publicat: 26.05.2021
  8. Stacked diffs and ghstack

    Publicat: 25.05.2021
  9. Shared memory

    Publicat: 24.05.2021
  10. Automatic mixed precision

    Publicat: 21.05.2021
  11. Conjugate views

    Publicat: 20.05.2021
  12. History and constraints of Tensor

    Publicat: 19.05.2021
  13. How new operators are authored

    Publicat: 18.05.2021
  14. The life and death of Variable

    Publicat: 17.05.2021
  15. Backend extensibility

    Publicat: 14.05.2021
  16. The road to structured kernels

    Publicat: 13.05.2021
  17. Functionalization

    Publicat: 12.05.2021
  18. Just enough CUDA to be dangerous

    Publicat: 11.05.2021
  19. Inference mode

    Publicat: 10.05.2021
  20. Vectorization

    Publicat: 07.05.2021

4 / 5

The PyTorch Developer Podcast is a place for the PyTorch dev team to do bite sized (10-20 min) topics about all sorts of internal development topics in PyTorch.

Visit the podcast's native language site