Best AI papers explained
A podcast by Enoch H. Kang
528 Episoade
-
Bootstrapping Language Models with DPO Implicit Rewards
Publicat: 02.05.2025 -
DeepSeek-Prover-V2: Advancing Formal Reasoning
Publicat: 01.05.2025 -
THINKPRM: Data-Efficient Process Reward Models
Publicat: 01.05.2025 -
Societal Frameworks and LLM Alignment
Publicat: 29.04.2025 -
Risks from Multi-Agent Advanced AI
Publicat: 29.04.2025 -
Causality-Aware Alignment for Large Language Model Debiasing
Publicat: 29.04.2025 -
Reward Models Evaluate Consistency, Not Causality
Publicat: 28.04.2025 -
Causal Rewards for Large Language Model Alignment
Publicat: 28.04.2025 -
Sycophancy to subterfuge: Investigating reward-tampering in large language models
Publicat: 28.04.2025 -
Bidirectional AI Alignment
Publicat: 28.04.2025 -
Why Do Multi-Agent LLM Systems Fail?
Publicat: 27.04.2025 -
LLMs as Greedy Agents: RL Fine-tuning for Decision-Making
Publicat: 27.04.2025 -
LLM Feedback Loops and the Lock-in Hypothesis
Publicat: 27.04.2025 -
Representational Alignment Drives Effective Teaching and Learning
Publicat: 27.04.2025 -
Adaptive Parallel Reasoning with Language Models
Publicat: 27.04.2025 -
AI: Rewiring the Flow of Ideas and Human Knowledge
Publicat: 27.04.2025 -
Learning and Equilibrium with Ranking Feedback
Publicat: 27.04.2025 -
Designing Human-AI Collaboration: A Sufficient-Statistic Approach
Publicat: 27.04.2025 -
GOAT: Generative Adversarial Training for Human-AI Coordination
Publicat: 27.04.2025 -
π0.5: Generalization in Robotic Manipulation via Diverse Data
Publicat: 27.04.2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
