528 Episoade

  1. NoWag: Unified Compression for Large Language Models

    Publicat: 26.04.2025
  2. Optimal Tool Calls in Language Model Reasoning

    Publicat: 26.04.2025
  3. Data Selection for Empirical Risk Minimization

    Publicat: 26.04.2025
  4. LoRe: Low-Rank Reward Modeling for Personalized LLMs

    Publicat: 26.04.2025
  5. ParaPO: Reducing Language Model Verbatim Reproduction

    Publicat: 26.04.2025
  6. Test-Time RL: Self-Evolving LLMs via Majority Voting Rewards

    Publicat: 25.04.2025
  7. Tina: Tiny LoRA Reasoning Models

    Publicat: 25.04.2025
  8. Evaluating large language models in theory of mind tasks

    Publicat: 25.04.2025
  9. QUEST: Quality Sampling for Machine Translation

    Publicat: 24.04.2025
  10. Offline Preference Learning via Simulated Trajectory Feedback

    Publicat: 24.04.2025
  11. Reasoning Elicitation in Language Models via Counterfactual Feedback

    Publicat: 24.04.2025
  12. Eliciting Human Preferences with Language Models

    Publicat: 24.04.2025
  13. Sub-Optimal Data for Human-in-the-Loop Reinforcement Learning

    Publicat: 24.04.2025
  14. γ-Bench: Evaluating LLMs in Multi-Agent Games

    Publicat: 24.04.2025
  15. DRAFT: Self-Driven LLM Tool Mastery via Documentation Refinement

    Publicat: 24.04.2025
  16. Optimal Prediction Sets for Enhanced Human-AI Accuracy

    Publicat: 24.04.2025
  17. Self-Correction via Reinforcement Learning for Language Models

    Publicat: 24.04.2025
  18. Tractable Multi-Agent Reinforcement Learning through Behavioral Economics

    Publicat: 24.04.2025
  19. Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement

    Publicat: 24.04.2025
  20. Iterative Nash Policy Optimization for Language Model Alignment

    Publicat: 24.04.2025

21 / 27

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site